
Numerical analysis of boiling on high heat-flux and high
subcooling condition using MPS-MAFL

S. Heo *, S. Koshizuka, Y. Oka

Nuclear Engineering Research Laboratory, University of Tokyo, 2-22 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1188,

Japan

Received 8 November 2001; received in revised form 20 December 2001

Abstract

This paper shows the numerical simulation study on the growth of the bubble in the transient pool boiling using

moving particle semi-implicit with meshless advection using flow-directional local grid (MPS-MAFL) method. The

growth process of a bubble with the different initial radii is calculated in a high heat-flux and high subcooling condition.

The smaller initial radius is, the earlier the growth starts. The initial bubble radius has little effect on the growth ini-

tiation time and the bubble departure radius. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

When the control rod is unlikely to be withdrawn

from the reactor core of nuclear power plant (NPP), a

large reactivity insertion increases the nuclear reaction

rate and the core power. Negative reactivity can be

added from Doppler effect in the fuel and void genera-

tion in the reactor coolant. This is called a reactivity

initiated accident (RIA).

Void formation in the coolant is a very important

factor in the safety analysis of the RIA but the current

licensing calculations neglect void formation because it

is difficult to predict the time and the amount of void

during a rapid transition condition.

A number of experimental studies are found in the

literature. Iida et al. [1,2] have carried out experiments

of transient boiling in high heat flux conditions for

various fluids. The void formations during RIA under

cold shutdown and hot standby conditions was studied

by Yamada et al. [3] and Minato et al. [4]. Sugiyama

et al. [5] investigated high burnup fuel behavior under

RIA and Risher et al. [6] simulated the behavior of re-

actor core under RIA using transient three-dimensional

computer code SPNOVA.

There were many efforts to simulate boiling phe-

nomena using numerical method. Welch [7] simulated

vapor bubble growth using a moving grid to trace the

phase interface with the finite volume method, but it is

limited to cases where the deformation of the phase in-

terface was relatively small. Juric and Tryggvason [8]

calculated a vapor shape in film boiling using a front

tracking/finite difference method. Yoon [9] and Yoon

et al. [10] studied sloshing of free surface, bubble rise in

viscous liquids and bubble behavior in the nucleate pool

boiling using moving particle semi-implicit with mesh-

less advection using flow-directional local grid (MPS-

MAFL) method. The accuracy of MPS-MAFL was

tested through the calculation of natural convection in a

square cavity [12].

In the present paper, MPS-MAFL method was ap-

plied to the simulation of nucleation boiling where the

heat flux is very high and the coolant is highly sub-

cooled. Bubble behavior and void fraction are calculated

for the case of RIA under the cold shutdown condition

of boiling water reactor (BWR) core and the results are

compared with the experiment of Yamada et al.
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2. Mathematical model of MPS-MAFL method

Moving particle semi-implicit (MPS) method is a

particle method where thermal hydraulic problems are

solved by particle interactions without the aid of grids.

Convection terms are not necessary to calculate because

of fully Lagrangian description. In the MPS method,

differential operators, such as gradient and Laplacian, in

the governing equations are modeled as particle inter-

actions. A particle interacts with its neighbors in the

interaction area covered with a weight function. The

meshless advection using flow-directional local grid

(MAFL) method is a gridless method developed for the

calculation of convection. MPS-MAFL enables us ar-

bitrary Lagrangian–Eulerian calculation.

In MPS-MAFL method, the calculation procedure

consists of three phases: Lagrangian, re-configuration

and convection (Eulerian). In the Lagrangian phase, the

governing equations are solved using the particle inter-

action models of MPS and the computing points are

moved in Lagrangian description. Next, the computing

points are re-configured by considering fixed boundaries

and moving interfaces. The physical quantities at new-

time coordinates are interpolated through a convective

(Eulerian) calculation using MAFL method.

2.1. Governing equations

The continuity, Navier–Stokes and energy equations

for incompressible viscous flows are:

r �~uu ¼ 0; ð1Þ

q
o~uu
ot

 
þ ð~uu�~uucÞ � r~uu

!
¼ �rp þ lr2~uuþ r~jj �~nnþ q~gg

ð2Þ
and

oT
ot

þ ~uu
�

�~uuc
�
� rT ¼ ar2T ; ð3Þ

where~nn is the unit normal vector to the interface. In the

convection terms of Eqs. (2) and (3), ~uu and ~uuc represent

the fluid velocity and the motion of a computing point

that can be adaptively configured, respectively. An ar-

bitrary calculation is allowed between fully Lagrangian

calculation (~uuc ¼~uu) and Eulerian calculation (~uuc ¼ 0) so

that a sharp fluid front is traced accurately by moving

the computing points in Lagrangian coordinates while

the fixed boundaries are described with Eulerian coor-

dinates.

2.2. Numerical scheme

The calculation procedure of MPS-MAFL method

consists of three phases: Lagrangian, re-configuration,

and convection (Eulerian).

In the Lagrangian phase, the right-hand side of Na-

vier–Stokes equation (Eq. (2)) is solved explicitly and the

temporal velocity, ~uu�, is obtained by

~uu� ¼~uun þ Dt
q

lr2~uun
h

þ rðj �~nnÞn þ qg
i
; ð4Þ

where superscript n refers to the time step. The temporal

location of the computing point becomes

~rr� ¼~rrn þ~uu�Dt: ð5Þ

The pressure is calculated implicitly using Poisson’s

equation

r2Pnþ1 ¼ q
Dt

r �~uu�: ð6Þ

The temporal velocity and coordinates are updated by

the pressure gradient term as

~uuL �~uu�

Dt
¼ � 1

q
rPnþ1 ð7Þ

and the position of the computing point is updated by

~rrL ¼~rrn þ~uuLDt; ð8Þ

Nomenclature

A area

d number of space dimensions

g gravity

n number density

p pressure

r radius, distance

re radius of interaction area

T temperature

t time (s)

Dt time increment

~uu velocity vector

w weight function

Greek symbols

a thermal diffusivity

l viscosity

q density

r surface tension

Subscripts

g gas phase

l liquid phase

a arbitrary
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where superscript ‘L’ stands for Lagrangian description.

The temperature at the new position of the computing

point, T L, is obtained by solving the energy equation

(Eq. (3)) explicitly as

T L ¼ T n þ ar2T n � Dt: ð9Þ

The particle interaction models of the MPS method,

which will be presented in the next section, are applied

to the differential operators, such as gradient, Laplacian

and divergence, in Eqs. (4), (6), (7) and (9).

In the re-configuration phase, the position of com-

puting point at new-time step, ~rrnþ1, is determined arbi-

trarily and the velocity of the computing point, ~uuc, is

given by

~uuc ¼~rrnþ1 �~rrn

Dt
: ð10Þ

From Eqs. (8) and (10), the arbitrary convection velocity

~uua (	~uuL �~uuc) becomes

~uua ¼~rrL �~rrn

Dt
�~rrnþ1 �~rrn

Dt
¼ �~rrnþ1 �~rrL

Dt
: ð11Þ

The position changes associated with the velocities, ~uuL,

~uuc and ~uua, which are illustrated in Fig. 1.

At the convection phase, the convection terms of

Navier–Stokes and energy equations, Eqs. (2) and (3)

are solved and velocity and temperature at the new time-

step are obtained by means of interpolation of values at

~rrL � Dt~uua from the profiles of ~uuL and T L as

~uunþ1 	~uu ~rrnþ1
� �

¼~uu ~rrL
�

� Dt~uua
�

ð12Þ

and

T nþ1 	 T ~rrnþ1
� �

¼ T ~rrL
�

� Dt~uua
�
: ð13Þ

The gridless convection scheme MAFL is applied to

Eqs. (12) and (13).

2.3. Lagrangian phase

Differential operators in the governing equations are

calculated using the particle interaction models of MPS

method. The gradient and Laplacian models were pro-

posed by Koshizuka et al. [13] and the divergence model

was developed for MPS-MAFL method by Yoon et al.

[14]. In these models, a particle interacts with its neigh-

boring particles with a weight function wðr; reÞ, where r
is the distance between two particles and re is the radius

of interaction area. The following function is employed

in this study:

wðr; reÞ ¼
�ð2r=reÞ2 þ 2 ð06 r < 0:5reÞ;
ð2r=re � 2Þ2 ð0:5re 6 r < reÞ;
0 ðrP reÞ:

8<
: ð14Þ

Since the interaction area of the weight function is

bounded by re, a particle interacts with a finite number

of neighboring particles in r < re. The radius of the in-

teraction area varies in space and time so that the

number of particles within re is kept constant.

The differential operator vector r in the pressure

gradient term of Navier–Stokes equation, Eq. (2) is ex-

pressed in terms of scalar quantities of each particle with

the weight function of Eq. (14). A gradient vector be-

tween two particles i and j possessing scalar quantities

/i and /j at~rri and~rrj is simply defined by ð/j � /iÞð~rrj �
~rriÞ=j~rrj � ri!j2. The gradient vector at the particle i is

given as the weighted average of the gradient vectors

between the particle i and its neighboring particles j,

r/h ii ¼
d
ni

X
j 6¼i

/j � /i

j~rrj �~rrij2
~rrj
�"

�~rri
�
w j~rrj
�

�~rrij; re;ij

�#
;

ð15Þ

where the normalization factor is defined by

ni 	
X
j 6¼i

w j~rrj
�

�~rrij; re;ij

�
ð16Þ

and re;ij ¼ ðre;i þ re;jÞ=2.

The Laplacian operator r2 representing diffusion is

modeled by distribution of a quantity from a particle to

its neighboring particles by use of the weight function as

follows:

r2/

 �

i
¼ 2d

kni

X
j6¼i

/j

�h
� /i

�
w j~rrj
�

�~rrij; re;ij

�i
: ð17Þ

By the central limit theorem, Eq. (17) converges to exact

solution if k is determined so that the variance increase,

r2ðDtÞ, during Dt is equal to 2dv=Dt which is the theo-

retical variance increase of /, where r is the diffusion

coefficient.

k ¼
X
j6¼i

j~rrj
j

�~rrij2w j~rrj
�

�~rrij; re;ij

�k
: ð18Þ

Fig. 1. Schematic diagram of numerical algorithm.
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This Laplacian model is conservative because the

quantity lost by a particle is just obtained by its neigh-

boring particles.

The divergence operator is modeled like the gradient

operator in Eq. (15). The velocity divergence between

two particles i and j is defined by ð~uuj �~uuiÞ � ð~rrj �~rriÞ=
j~rrj �~rrij2. The velocity divergence at the particle i is given

by the weighted average of the individual velocity di-

vergences.

r �~uu
D E

i
¼ d

ni

X
j6¼i

ð~uuj �~uuiÞ � ð~rrj �~rriÞ
j~rrj �~rrij2

w j~rrj
�"

�~rrij; re;ij

�#
:

ð19Þ

The right-hand side of Eq. (6) is calculated using

Eq. (19) and the left-hand side is calculated using the

Laplacian model of Eq. (17). Then we get simultaneous

equations expressed by a linear symmetric matrix. This

matrix equation is solved by the incomplete Cholesky

conjugate gradient (ICCG) method. Since this incom-

pressibility model is based on the velocity divergence,

the particle number density need not be constant and

particles are allowed to be concentrated locally for

higher resolution.

2.4. Re-configuration phase

The fully Lagrangian method is more complicated

for describing inlet and outlet flow boundaries as well as

irregular distribution of particles may occur by particle

motion. Thus, the computing points, which are particles

in Lagrangian context, are re-configurated.

After the locations of computing points are modified

from~rrn to~rrL in Lagrangian phase, the computing points

are redistributed considering the shape of boundaries.

The computing points belonging to the fixed boundary

and inlet or outlet boundary go back to their original

position,~rrn, for a fully Eulerian calculation. The moving

boundary can be traced through the Lagrangian motion

of the computing points describing the free surface

without calculating the convection term of the govern-

ing equation so that ~rrnþ1
surface ¼~rrL

surface. However, in prac-

tice, the computing points on the moving boundary

are likely to be apart or cluster each other when the fully

Lagrangian calculation is applied repeatedly for a num-

ber of time steps. To avoid this situation, the coordinates

~rrnþ1
surface are adjusted to keep an equal distance between the

computing points. After the coordinates of boundary

point have been determined, the computing point of the

inside region is configured considering the geometry of

boundaries.

The re-configuration of computing points corre-

sponds to the mesh re-generation in the conventional

mesh-based method. Although it is somewhat laborious

task to configure the computing points for the complex

geometry, it is much easier in MPS-MAFL method be-

cause only computing points are located. The number of

computing points need not be constant and can be

spatially concentrated for the higher resolution.

2.5. Convection phase

MAFL method is proposed by Yoon et al. [14] for

an accurate gridless calculation of convection. A multi-

dimensional convection problem is regarded as a one-

dimensional problem if a computational grid is generated

along the flow direction. Considering the flow direction

at each computing point (~uua in Eqs. (12) and (13)), a one-

dimensional local grid is temporary generated as shown

in Fig. 2 where Dr shows the distance between local grid

points and re;i is the radius of interpolation area. The

positions of local grid points are denoted by h~rrik . Lo-

cations and the number of local grid points are de-

termined based on the difference scheme that will be

applied. For example, in Fig. 2, there are three local grid

points, two in the upstream and the other in the

downstream of the computing point, for the application

of a second-order upwind scheme.

At the local grid points, the physical properties, hf ik ,
are interpolated from those of neighboring computing

points, f L
j , using a weight function as follows:

hf ik ¼

P
j f

L
j w j~rrL

j � ~rr
D E

k
j; re;k

� �
P

j w j~rrL
j � ~rr

D E
k
j; re;k

� � ;

k ¼ �2;�1; 1: ð20Þ

The weight function in Eq. (14) is used. The interpo-

lation region is limited by a circle of the radius of

interpolation area, re;k and the grid lies vertical to the

Fig. 2. Generation of local grid.
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flow-directional local grid as shown in Fig. 2. If all the

particles within the radius of re;k are used for the inter-

polation, the interpolation regions will overlap each

other and this will cause more numerical diffusion.

Any difference scheme can be applied easily since a

one-dimensional gird has been employed along the flow

direction. In this study, a first-order upwind scheme is

applied as

f nþ1
i ¼ f L

i � q f L
i

�
� fh i�1

�
; ð21Þ

where q ¼ j~uuajDt=Dr. When the number and locations

of the computing points are largely changed during the

re-configuration phase, the profile of the convection

velocity is severely distorted and a higher-order scheme

is likely to cause numerical instability.

2.6. Surface tension model

For the analysis of two-phase interface problems

where the curvature of the interface is large, a calcula-

tion model for the surface tension force is used. In

general, the pressure difference between gas and liquid is

Dp ¼ rj: ð22Þ

In the present method, a continuous curvilinear surface

is obtained by connecting the computing points on

phase interface. Then the curvature j is calculated from

the radius of circumference whose center is determined

to be the intersection points of two perpendicular bi-

sectors. It is showed in Fig. 3. This model is verified

through the calculation of volume decrease of a gas

bubble in stagnant liquid due to surface tension [9].

2.7. Coupling of energy and momentum equations

The energy and momentum equations of Eqs. (2) and

(3) are solved with the following calculation steps:

(1) the diffusion term of the energy equation is calcu-

lated explicitly with the boundary condition,

Tbubble surface ¼ TsatðPgÞ,
(2) the evaporation rate and the amount of evaporation,

Q, is determined by calculating the heat transfer rate

at the phase interface,

(3) the new-time vapor pressure is guessed considering

the change in the amount of vapor

P � ¼ Pn V
n þ DV
V n

; ð23Þ

where DV ¼ Q=hfgqg,

(4) momentum equation is solved and the coordinates,

velocity vectors and temperatures are updated,

(5) for the new-time coordinates the vapor volume,

V nþ1, is calculated, and

(6) the vapor pressure is modified considering the change

in the vapor volume

Pnþ1 ¼ P � V
n þ DV
V nþ1

: ð24Þ

The ideal gas law is applied for the calculation of the

vapor pressure.

2.8. Boundary condition models

In a gridless mothod, the physical quantity at the

computing points beyond the boundary hf iout does not

coincide with boundary value fBC. When a strict condi-

tion is needed at the boundary, we have to solve a set of

simultaneous equations for the quantities at the com-

puting points beyond the boundary. Instead of solving a

matrix, we assign boundary values explicitly to the

computing points beyond the boundary so that the esti-

mation at the boundary, hf iBC, approximates fBC. For

example, in a free-slip condition, the velocity vector of

an outside computing point is determined so that the

component parallel to the wall is equal to that of the

nearest inner point while the vertical component is zero.

In a non-slip condition, the velocity distribution of the

outside point is given to be opposite to that of the inner

points.

The Neumann boundary condition is applied to the

implicit calculation of pressure Poisson equation. This

pressure boundary condition is easily implemented

through the Laplacian model in Eq. (17). If there are N
inside particles, we have N simultaneous linear equa-

tions expressed by N � N symmetric matrix where the

coefficients of the matrix are given by Eq. (17). The

Neumann boundary condition is satisfied if the pressure

of a particle j beyond the boundary equals to that ofFig. 3. Determination of curvature of curvilinear surface.
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boundary particles, i.e., Pj ¼ Pi. This may be approxi-

mated by an alternative expression of Eq. (17)

r2P

 �

i ¼
2d
kni

X
j6¼i;j 6¼out

Pj
�h

� Pi
�
w j~rrj
�

�~rrij; re;ij

�i
: ð17aÞ

For the constant temperature boundary condition,

the temperature of computing points beyond heater wall

is assigned a value at the end of convection phase of

each time step. For the constant heat flux case, it is

determined by considering the temperature of the com-

puting points near the heater and heat flux

T nþ1
heater ¼ T nþ1

liquid

D E
þ DTh iheat flux

¼ T nþ1
nearest þ

q00

k
Dynearest ð25Þ

or

T nþ1
heater ¼

1

ni

X
j¼liquid

T nþ1
j

��
þ q00

k
Dyj

�
w j~rrj
�

�~rrij; re;ij

��
:

ð25aÞ

The temperature profile without phase change nor flow

motion was calculated using this model. The result is

shown in Figs. 4 and 5 with that of heat conduction

equation and two results show a good agreement.

3. Simulation condition

Simulation conditions are based on the experiment of

Yamada et al., which considered the RIAs under cold

shutdown condition. The simulation is x–y two-dimen-

sional, while the experiment is three-dimensional. The

effect of space dimension on the bubble growth was in-

vestigated [9] and no significant difference is observed

between x–y and r–z two-dimensions. The heating wall is

horizontal in the simulation though it is vertical in a

rectangular pipe in the experiment. The effect of buoy-

ancy is not large because the growth time of bubble is

very short (shorter than 0.2 s).

The simulation conditions which are used in this

study are summarized in Table 1. It is assumed that the

initial shape of bubble is spherical and the contact angle

between the vapor–liquid interface and wall is 45�.
The heat flux is 2 MW/m2 which is the same as the

experiment. The radius of an initial bubble is varied

from 30 � 10�6 to 300 � 10�6 m. Very small bubbles are

difficult to be handled because extremely many com-

puting points are needed.

Fig. 6 shows the configuration of computing points.

A space of 0:01 � 0:015 m2 divided into four regions so

that computing points are fitted to the liquid–vapor in-

terface and are concentrated near the interface. In region

(a), the computing points are fitted to the interface

having a constant spacing. Region (b) surrounding re-

gion (a) is filled with the computing points in a rectan-

gular array. The spacing of the computing points is

wider as the distance from the interface increases. The

average distance between the neighboring computing

points, which is the growth ratio of the grid size in mesh-

based methods, increases by the ratio of 1.15 for each

layer. The computing points are uniformly distributed in

region (c). In region (d), which is placed in the upper side

of regions (b) and (c), horizontal layers of the computing

points are configured by the growth ratio of 1.15.

Fig. 4. Verification of boundary condition model

(constant temperature case, Twall ¼ 110 �C and Tbulk ¼ 96 �C).
Fig. 5. Verification of boundary condition model

(constant heat flux case, q00heater ¼ 100 kW=m2 and Tbulk ¼ 96 �C).

Table 1

Initial and boundary conditions

Temperature of water 27 �C
Radius of bubble 30–300 � 10�6 m

Contact angle of bubble 45�
Temperature in the bubble 100 �C
Pressure of bubble 1 atm

System pressure 1 atm (at the top of water)

Heat flux at the heater wall 2 MW/m2

2638 S. Heo et al. / International Journal of Heat and Mass Transfer 45 (2002) 2633–2642



The spacing between the computing points on the

interface, which is the distance of computing points on

the first layer of region (a), varies from 2 � 10�6 to

15 � 10�6 m at initial state depending on the radius of

bubble. The spacing increases as the radius of bubble

increases and it is about 60 � 10�6 m at the departure

point of a bubble. The number of computing points at

the bubble surface is about from 80 to 180 and the total

number of computing points is from 2500 to 8000.

When the average temperature of water at the bubble

surface is lower than the initial temperature of vapor,

the heat flow at the bubble surface and the movement of

computing points, that is, the movement of the interface

between bubble and water is not calculated and it pre-

vents the collapse of bubble.

A non-slip boundary condition is applied at the wall

and the constant heat flux model (Eq. (25)) applied to

the heater wall. The upwind scheme is used for the

convection calculation.

4. Results and consideration

Fig. 7 shows the shape change of the bubble accord-

ing to time. The initial radius of the bubble is 50�

10�6 m and another conditions are same with what

presented at Table 1. A dot presents the location of a

computing point and the color of dot presents the tem-

perature at the point. The white area of the center rep-

resents the vapor bubble.

At the start, water surrounding the bubble is sub-

cooled at 27 �C. As time goes on, the average temper-

ature of water around the bubble rises and reaches the

saturation temperature. The net heat flux at the interface

flows from water to the bubble and the bubble grows at

0.0162 s. Growth of the bubble is slow because of the

low superheating of water, inertia of water and surface

tension at the interface.

The bubble growth is accelerated with increase of the

superheat of water. A larger bubble size also enhances

the bubble growth speed due to reduction of surface

tension. When the bubble becomes larger, however, the

bubble is condensed by bulk water. Finally, the bubble

departs from the heater wall, bubble is rapidly con-

densed. This explanation is confirmed by Figs. 8 and 9

showing the radius of the bubble and the net heat flux at

the bubble surface, respectively.

To examine the effect of the initial radius of bubble

nuclei, the bubble growth is searched for the several

values of the initial radius and some results are shown in

Fig. 10. It becomes clear that the bubble growth times

taken from the start of bubble growth to the departure

are almost same and the smaller bubble is, the earlier it

starts to grow. These results agree with the observational

results that many small bubbles cover the entire surface

of heater in the case of high heat flux and high sub-

cooling while large bubbles are often observed in the case

of low heat flux and low subcooling. When a heat flux is

very high and liquid is highly subcooled, the tempera-

ture difference between the region nearest heater and

the other part of liquid is very high and the thickness

of thermal layer is very small. The nearer region to

heater the bubble is located on, the more energy it re-

ceives from the heater and the less energy it looses at

the upper part of the bubble surface, therefore the nu-

cleus of the smaller radius grows earlier than larger

nucleus.

The calculation result is compared with the experi-

mental data of Yamada et al. The volume of bubble was

estimated from the shape of bubble surface in two-

dimension using the volume integral method as shown in

Fig. 11. It is assumed that the shape of the bubble is

symmetric to the center line. A nucleation site density is

necessary to get a void fraction, but there is no infor-

mation about the active nucleation site density under the

present condition. It is assumed that the pitch between

the nucleation sites is about four times the departure

diameter of the bubble, then the nucleation site density

is 4000/m2. The void fraction of this simulation is shown

in Fig. 12 with that of Yamada et al. and these show

good agreement with each other.

Fig. 6. Configuration of computing points.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Sequence of bubble growth: (a) 0.0162 s; (b) 0.0362 s; (c) 0.0562 s; (d) 0.0762 s; (e) 0.0962 s; (f) 0.1162 s; (g) 0.1363 s; (h) 0.1463 s.
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It is important that when the vapor starts to grow

and how much time will be taken before the amount of

void generation reaches the amount whose reactivity is

equivalent to the reactivity of one control rod at the

moment of RIA in reactor core. The shape of void

fraction of this study is very similar to that of Yamada’s

experiment during the nucleate and transient boiling

regime.

5. Conclusions

The growth of the bubble on the condition of high

heat flux and high subcooling such as RIAs at the NPP

was studied and was simulated using MPS-MAFL

method. The growth process of bubbles with the differ-

ent initial radius is calculated and it becomes clear that

as smaller initial radius is, as earlier the growth starts.

The initial bubble radius has little effect on the growth

initiation time and the bubble departure radius. The

calculated void fraction was compared with that of the

experiment of Yamada et al. and it becomes certain that

Fig. 11. Volume element of a computing cell.

Fig. 12. Comparison of void fraction with that of Yamada’s

experiment.

Fig. 8. Radius of vapor bubble.

Fig. 10. Effect of the initial bubble radius.

Fig. 9. Total heat flow at the bubble surface.
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the MPS-MAFL code well-estimates the void fraction

on the high heat flux and high subcooling condition.
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